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Continuum Modeling of Flexible Structures
with Application to Vibration Control

W. H. Bennett* and H. G. Kwatnyt
Techno-Sciences, Inc., Greenbelt, Maryland

In this paper we consider the construction of hybrid models for flexible structures, including both the natural
spatially distributed dynamics of low-mass density structures and the lumped models associated with rigid-bedy
dynamics. For the purposes of active control of structural vibrations we argue that by using transform methods,
the standard approach to transfer function (or mechanical impedance) modeling can be extended to provide a
complete formulation of a hybrid model with localized control. We proceed to give a systematic procedure for
obtaining the required transfer functions and Green’s functions for the hybrid model dynamics consisting of
one-dimensional elastic elements (such as beams, rods, and cables) together with rigid-body (lumped) models.
We focus on a well-known family of medels for elastic elements together with various reductions and indicate
the construction of well-posed state-space models for these systems, Using the resulting state-space, we next
demonstrate the construction of a complete frequency domain characterization of the elemental system response
using transfer functions and Green’s functions. Hybrid constructions are discussed for various interconnections
of distributed and lumped elements, and a simple Mustrative example is given. We highlight the extent to which
the required computations can be performed antomatically on a digital computer using a computer algebra

VOL. 27, NO. 9

system.

Nomenclature
= cross-sectional area
modulus of elasticity
moment of inertia
beam length
longitudinal coordinate
effective shear modulus
mass density
lateral displacement
angular rotation of cross section
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I. Introduction

T is now generally accepted that large, low-mass density

structures will be essential for near-term space applications.
Moreover, it is apparent that active control of structural vibra-
tions will be necessary to enhance their stiffness and damping
properties.! In this paper we consider the construction of
rhathematical models for elastic dynamics of space structures
suitable for the design of active vibration control laws for
these systems.

* The success of active control for such structures will hinge
to some extent on the ability of a control law to react to vibra-
tory responses that may be initially localized before they prop-
ﬁate throughout a structure. This leads naturaily to questions

how to implement active control so as to distribute the con-
trol effort spatially as needed. We contend that existing meth-
ods for the design of control systems for distributed parameter
systems can be applied effectively if appropriate continuum
models for the candidate space structures can be computed.
The nature of the required models, however, can be quite dif-
fgrent from those obtained by the standard finite-element
myethods that are popular for large structural analysis prob-
lems throughout the aerospace industry. In this paper we de-
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lineate a method for constructing the (possibly irrational)
transfer functions and Green’s functions required to describe
the distributed dynamics of interconnected structures for con-
trol system design. The methods we employ focus on the con-
struction of exact algebraic expressions for the required func-
tions. This approach is significant in that numerical issues
arising in the evaluation of the irrational models of the system
frequency responses can be addressed in the context of the
control problem and can be consistent with the control objec-
tive. Although a considerable literature exists on the computa-
tion of Green’s functions for interconnected systems with both
distributed and lumped parameter elements? and with specific
application to interconnected mechanical structures,’* appli-
cation of these techniques for modeling aerospace structures
has been limited. The contribution of the results contained in
this paper serves primarily to focus these methods on the con-
struction of models required for design of optimal distributed
parameter control of a class of flexible space structures.

We begin in this section with a brief overview of continuum
models for active structural control. One method for the com-
putation of a distributed control law for a distributed parame-
ter model then is briefly summarized. This discussion serves to
motivate our interest in the continuum modeling methods con-
sidered in the sequel.

Comprehensive models of flexible spacecraft dynamics will
involve systems with fairly complex interconnections of
lumped and distributed subsystems, and therefore we intend
to construct the overall models by first developing subsystem
models and then combining them according to the required
interconnection rules. In Sec. II, basic questions of causality
and well-posedness of certain standard models for beams are
reviewed. These equations are crucial to the computation of .
hybrid state-space models discussed in Sec. III for an inte-
grated structural system. Throughout this effort we have
focused on the potential for model construction using com-
puter-aided computation, a combination of modern computer
algebra (symbolic manipulation) and numerical methods. In
our efforts we have used the computer algebra system pro-
gram SMP 56

A. Generic Control Problem for Flexible Structures

In this section we consider a commonly used generic model
for elastic dynamics of a spatially continuous structure. We
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summarize the construction of a state-space model and intro-
duce a typical control problem for vibration suppression. We
highlight the modal approximations that are popular for these
problems and proceed to demonstrate an alternate technique
for model construction and control design. Modeling and con-
trol law computation can proceed in the frequency domain,
based on transfer function methods. We focus on the class of
structural control problems for which the question of control
of propagation of wavelike disturbances is important.

A popular continuum model for a flexible structure’? is
described by a system of partial differential equations (PDE):

Pw(t,2)
at2

aw(t,2)
at

m(z) + Dy + Agw(t,2) = F(t,2) 1)

where w(t,z) is an N vector of displacements of a structure £
with respect to some equilibrium for @ is a bounded, open set
“in RN. The vector z€Q is a coordinate in 2. We assume the
boundary 3 is smooth. The mass density m(z) is positive def-
inite and bounded on 3Q. The damping term Dodw/ dt models
both gyroscopic (asymmetric) and structural (symmetric)
damping effects. The internal restoring force Agw is generated
by a time-invariant, differential operator Ao for the structure.
For most common structural models, 4, is an unbounded dif-
ferential operator with domain D{(A) consisting of certain
smooth functions satisfying appropriate boundary conditions
on 39. Thus, for these problems, D(Ay) is typically dense in
the Hilbert space 3Co = £2(f) endowed with its natural inner
product {x,y o = fa x7(z)y(z) dz. Often (but not always), the
spectrum of Ao, 0(Ag), consists of discrete eigenvalues with
associated eigenfunctions that constitute a basis for £,(9).
The applied force distribution F(t,z) can be thought of as
consisting of three components:

F(1,2) = F4(t,2) + Fo(6,2) + Fa(t,2) 0))

where F, is the N vector of exogenous disturbances (possibly
forces and torques), F, is a continuous, distributed, controlled
force field (an available option only in some special applica-
tions), and F, represents controlled forces due to localized ac-
tuation:

k
Fo(t,z) = 21 bj(z)u;(t) = Bou () (€)
T

The actuator influence functions b;(z) are highly localized in
Q and can be approximated by Dirac delta functions. We as-
sume that a finite number p of measurements can be made as

aw
y(t)=Cow + Cg o )

where y(t) is a p vector. The operators By: R™"—3Co, Co:
JCo—R?, and Cy : ICo—R? are bounded.

The standard vibration control problem for this model is to
find the controls u;(¢),J = 1,...,k (we ignore the possibility of
F.) given the observations y(t) to maintain the system state,
eg.,

W(t,z)]

x(4,2) = [v‘v(t 2)

)

as close to its equilibrium state as possible.

The choice of state-space given by Eq. (5) is often made for
models in the generic form of Eq. (1). (We will discuss later
how attractive alternate state-space models can arise in hybrid
constructions.) A natural assumption for structural problems'
is that A, is self-adjoint with a compact resolvent and discrete
(real) spectrum that is bounded from below. The state equa-
tion, Eq. (5), then can be considered as an element of a Hilbert
space 3C = D(A{’?) X 3o with the energy norm

lxll2 = (w,AoW Yo + {mW,W)o ©)
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where the first term represents potential energy and the second
term is kinetic energy. Thus, the (abstract) state-space model
can be written as

x(t,2) = Ax(t,2) + Bu(t) )
y(t) = Cx{1,2)

where

o I 0 , ,

For transient disturbances, the standard vibration contral
problem is essentially an optimal regulator problem whose so-
lution is a linear state feedback that minimizes the perfor-
mance index (parametrized by a real scalar e>0)

J(u)= So Iyl + ellul?) dt @

where | - | is the Euclidean norm on the appropriate finite
dimensional space. This is the generic control problem sur-
veyed in Balas.® In this paper we will concentrate on the con-
struction of state-space models and the computational aspects
of equations of the form of Eq. (1) and of optimal (discrete)
controls ;(¢) appearing in Eq. (3).

Various methods are available for approximation of the sys-
tem of Eq. (7).1%!! One method is based on a modal (eigen)
expansion of A that generates a sequence of finite dimensional
subspaces 3C, CIC, k =1,2,..., where 3C; = span{g¢;,j =1,
...,k} and the ¢;(z) are eigenfunctions (o mode shapes) for
A.712 Based on this approximation, a sequence of finite di-
mensional models for Eq. (5) can be generated: i

() = ADXx®() + BOu(t) (lb)

Using a truncated model of Eq. (10) with k finite and the
performance index J(u) projected onto the (finite dimen-
sional) space JCy, one can solve the associated optimal contgol
problem for the first k¥ modes of A. This is a classical ap-
proach and encompasses Ritz-Galerkin methods’ as well as
spline methods.!%!! However, as noted in Balas,? in all but a
few special cases, the control law when applied to the syst¢m
of Eq. (5) will excite higher-order modes. The inherent robust-
ness and stability properties as well as the degree of subopti-
mality of control laws based on such truncated modal approx-
imations has received a great deal of attention in both the
engineering and mathematics literature.!® Various alternate
approaches are available to deal directly with the infinite di-
mensional control problem given by Egs. (8) and (9), at least
abstractly (cf., Russell'®). One method suggested by Davis and
Barry' and Davis and Dickinson'® offers the advantage of a
computational procedure for approximating the true optimal
control in terms of the required control bandwidth. The
method is based on an extension of a Weiner-Hopf solutian'?
for the infinite dimensional control problem.

\

B. Wiener-Hopf Control !

In the context of the regulator control problem given by the
minimization of Eq. (9) subject to the infinite dimensional
model (7), spectral factorization can be seen to provide an/al-
ternate solution'é to a Riccati operator equation. Davis and
Dickinson!* and Davis and Barry'’ have explored the applica-
tion of spectral factorization for control design of a class of
distributed parameter models for long trains with multiple lo-
comotives. Also, in Bennett and Barkakati'? considerations
for application of these results to flexible structures were
given. The details of this method are outside the scope of this
paper. However, in this section we will summarize the relevant
results and highlight their significance for modeling of flexible
structures.
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Taking Laplace transforms in Eq. (7) allows one to write (at
least formally)

¥(s,z) = CR(5;4)x(0,2) + CR(s;A)BU(s) 11

The transfer function is G(s) = CR(s;A)B, where R(s;A) is
the resolvent operator for A, R(s;A): 3C—p(A4)C3C, where
A(A) is the resolvent set (or compliment to the spectrum of 4 ).

The optimal control law that minimizes Eq. (9) subject to
Eq. (7) consists of (linear) state feedback

E u(t) = —B*Kx(1,2) (12)

where B* is the formal adjoint of B in 3C. We remark that
B*K is a (linear) integral operator on JC that can be computed
exactly without recourse to an infinite dimensional Riccati op-
erator equation via the formula!’

B*K = % SO: [F*()]'G*(w;A)CR(iw;A) dw  (13)

\Yhere F(s) is the unique, causal spectral factor of

I + GT(—5)G(s) = F(s)FT(—s) (14)

For the infinite dimensional system (7), the transfer functions
G(s), F(s) are irrational and F(s) [resp. FT(—s)] is analytic
for Re s >0 (resp. Re s <0). Computational algorithms for
Eq. (14) are given in Davis!® and Bennett!” where a numerical
algorithm is given.

In this framework, the question of the modeling of flexible
structures for the design of feedback control for the suppres-
sion of (linear) vibrations centers on the computation of 1) the
irrational transfer function G(s), and 2) the resolvent R (s;A).
Then spectral factorization in Eq. (14) is performed using the
Davis-Dickinson algorithm,!’ and a numerical approximation
to Eq. (13) can be obtained that is valid in the frequency band-
width of the desired control action. We remark that, although
all computations are in the frequency domain, the resulting
control law is a linear, distributed state feedback. In the rest of
this paper we focus on the modeling problem for standard
elastic structural components consistent with these require-
ments.

E II. State-Space Models for Distributed Elements

A. Standard Forms for Linear PDE’s

. In this section we will consider the problem of deriving a
standard state-space description for typical distributed ele-
ments. In the next section we use these descriptions to com-
pute the complete frequency -domain response as required for
the control problem outlined earlier. Systems of interest to
us—specifically beams with one space variable and perhaps
several degrees of freedom—can be represented by one of two
standard forms. Once the structure of these standard models
is identified, it is straightforward, although far from trivial, to
mechanize the construction of the required transfer matrices
using symbolic computation.!?” Moreover, in order to assemble
hybrid system models by the interconnection of components
or subsystems, it is essential to have a clear understanding of
the causal requirements of the component mathematical mod-
ds. The following paragraphs develop the required concepts in
terms of commonly used structural elements. Since typical ele-
ments interact at physical boundaries, our foremost concern is
with the formulation of appropriate boundary conditions for
well-posed initial-boundary value problems.

' Before proceeding, we recall some classical terminology as-
sbciated with systems of partial differential equations. Con-
sider the system of first-order, partial differential equations
defined for =2 0and 0<z < L:

aw . dw .
— =F— , WER™ 15
E Y F % + Hw, we (15)
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If E is nonsingular, then Eq. (15) can be written as

ow aw
E —Fa—z + Hw (16)

where F = E™'F, H = E"'H. If F has only real eigenvalues and
a complete set of eigenvectors, then the system is said to be
hyperbolic (see, e.g., Zauderer's). If there are multiple real
eigenvalues and less than a complete set of eigenvectors, then
the system is of (partial) parabolic type. If all of the eigenval-
ues are complex, the system is of elliptic type. Systems with
complex eigenvalues are not causal. Lyczkowski et al.!® and
Sursock? provide an interesting discussion of this point in
connection with a fluid flow problem. The underlying prob-
lem is that systems with complex eigenvalues are not well
posed as initial value problems.2!22 We will not consider such
problems any further.

If E is singular, Eq. (15) can give rise to mixed systems of all
types. Some typical examples can be found in Friedly? and
Lapidus and Pinder.?* Our interest in this case will be limited
to purely parabolic systems of the type

w Pw w
E—G@'FFFZ—'FHW aa7n

which commonly arise in engineering problems.
In addition to Eqgs. (16) or (17), there are associated initial
and boundary conditions. For Eq. (16), these conditions take

the general form
Initial conditions:

w(z,0) = f(z) (18a)

Boundary conditions:
Low(0,0) + Tyw(L,2) = g(t) (18b)

where dim(g) = dim(w), and for Eq. (17), they take the gen-
eral form
Initial conditions:

w(z,0) = f(z) (19a)

Boundary conditions:
aw aw
Lyw(0,0)+ 2, i O0,0)+Tyw(L,t)+T, E (L,t)=g(t) (19b)

where dim(g) = 2dim (w).

It is well known that the coefficient matrices in Egs. (18)
and (19) must satisfy certain constraints if the problem formu-
lation is to be well posed. In the hyperbolic case [Eqs. (16) and
18)], these constraints essentially require that the boundary
conditions be compatible with the wave directions. Further
discussion can be found in Russell'® and Agarwala.!! In the
following sections we will discuss some standard models for
beams. The following notation is standard and assumes that
the elastic beam is uniform (i.e., the parameters are indepen-
dent of the spatial coordinate).

1. Timoshenko Beam Model

We will show how some conventional beam models can be
reduced to the standard forms described in the preceding para-
graphs. In particular, we will begin with the Timoshenko
model and then consider two commonly used approximations
that can be derived from it, the Bernoulli-Euler model and the
““string’” model. The equations of motion can be derived using
the Lagrange equations®® and in the absence of dissipation
take the form

Pn_9d o _
pA FYi 3 [KGA <az )} (20a)
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P 9 ap o Equation (26) and the second assumption now are used to re-
2 ETErT EI - 3z +xGA az —¢ (20b) duce Eq. (20a) to j

along with the natural boundary conditions for o = 0,L:
Displacement:

n(ast) =Nl (21a)
Shear force:
«GA [‘”""‘ D _ 4a t)] =7u0) @1b)
Rotation:
Pla,t) = ot (22a)
Moment:
EI[ (ot )] 7o) (22b)

Equations (20) can be replaced by four first-order equations
by introducing two new variables, »(z,?) and y(z,2):

%} = ‘;—: (23a)
%i:i = g—% +§ v (23¢)
%} = % ‘;‘i’ (23d)

These equations clearly represent a hyperbolic system, and the
natural boundary conditions become, for « = 0,L,
Displacement:

n(a,t) =74(t) (24a)
Shear force:
Heut) = 1o, ilt) =12 (24b)
Rotation:
de,t) = ult) (252)
Moment:

7o)

Hat) = valt),Yalt) = ol (25b)

Note that the boundary conditions applied to the first-order
system, (23) require the time integral of boundary forces or
moments applied to the beam. It is easy to confirm that the
transfer functions relating forces or moments to displacements
or rotations as derived from either Eqgs. (20) or (23) are indeed
identical and that the required integration of the shear force or
moment is essential in the first-order forms.

2. Bernoulli-Euler Beam Model

The Bernoulli-Euler model is obtained from the Timo-
shenko model with two additional assumptions: 1) rotational
inertia is neglected, o/ —0; and 2) shear deformation is ne-
glected, (9/9z) — $—0. The first assumption reduces Eq.

(20b) to
kGA <— - > :z<EI %%> (26)

& 3217) :
A ZE= —3 (EI 5 @n

Note that Eq. (26) along with the second assumption leads to
the following expression for shear force:

3 YA 5
f=xGA (52 - > = —a—z(EI #) @8)

The boundary conditions, Eqs. (21) and (22), reduce, for
a=0,L, to

Displacement: (
M) = nalt) (299)
Shear force:
e 2D (29b)
Displacement:
20D — gt = 9ult) (302)
Moment:
Eza"(‘" D_ ) (30b)

Equation (27) can be reduced to ‘‘first-order’’ form by ;in-
troducing a new variable y(z,¢):

a I 3%y '
"~ "4 Gla)
dy E o ;
= Tpar G15)

and the boundary conditions associated with Eqgs. (31) are, for
a=0,L,:

Displacement:
n{a,t) = n4(2) (32a)
Shear force: :
et o o AL i
Bz - 7a(t)’ Ya = I fa(t) (3]2b)
Rotation: i
|
2D = a0 as)
Moment: ;
Talt)

Y(ast) = 7a(t)’ Yo = ol

(38b)
Observe that Egs. (31) are a parabolic system of the type, of
Eq. (17). Equations (31-33) can be derived directly from Eq.

(27) or Eqgs. (23) upon invoking the first and second assurpp-
tions. We also should note that a corresponding expression for
shear force becomes |

62
f= _< > atdz 69
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3. “*String’’ Model

In some situations, bending deformation may be negligible
with respect to shear deformation, i.e., |¢| < |37/3z | . In
this case, Eq. (20a) reduces to

Py 9 an
pA T 52<KGA 3_z> 35)

with the following boundary conditions for a = 0,L;
Displacement:

e, t) = n4(t) (36a)
Shear force:
| )
kGA Pk Sut) (36b)

This simple model is primarily useful for illustrative purposes.
Again, by introducing the new variable »(z,¢), Eq. (35) can be
replaced by the following two first-order equations:

a dr

E = & (373.)
v G oy
Frie 7 P (37b)

subject to the following boundary conditions for a = 0,L.
Displacement:

n(a,t) = nq (38a)

Shear force:
_ o Jot)
V(a’t) - Va(t)y Vo = pA (38b)

B. Beam Models with Dissipation

; Various dissipation models have been proposed for use with
the Timoshenko and Bernoulli-Euler beam models. A sum-
mary of the most frequently cited models may be found in
Pich¢? and Wie and Bryson.?’ Experimental data is scant,
particularly in the high-frequency range, so that none of these
models can be considered definitive. Recent experimental
work by Russell has demonstrated that the usual conjecture of
‘‘damping proportional to frequency’’ for internal (material)
dissipation is not complete.? However, it is reasonably repre-
séntative of material damping for certain low-to-midrange fre-
quencies. Moreover, some of the more popular models were
never intended for use in general transient analysis and fail to
yield well-posed dynamical models (Chen and Russell®%). One
approach to developing dynamical models that include dissi-
pation is to augment the variational development of the equa-
tions of motion by introducing a Rayleigh dissipation function
(see also Russell®). We formulate such a function based on the
following assumptions: 1) external dissipation forces are pro-
portional to the coordinate velocities (i.e., %, ¢), and 2) inter-
npl dissipation forces are proportional to strain rates (i.e.,
shear strain rate 4 = 37/9z — ¢ and compressive strain rate
0%/3z). Thus, we define the dissipation function as

' L2 [0\ (a9’ afom\ as)?
R(*I,d’)si jo {c,(a—;l> +c2<a—d:> +c,[55(a_’:>_.£]
2
+C4<%) dz

where ¢),c; are coefficients of external damping and c3,c, are
coefficients of internal (material) damping.
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The modified Timoshenko equations are found after carry-
ing out the usual variational calculations? yielding

¥y _ 2 ] o
PE ™ az["GA (az - ¢>] %

¥y &
vt~ 2s) @)
2o o[ _ a0 a9 3¢
pIW—EE[EI_a;:I +KGA<a—z— —Cza
*n 39 3¢
v 3) e w

To obtain the Bernoulli-Euler model we invoke the approxi-
mations p/ —0 and 33/9z — ¢—0, with the following result:

.. ¥ 3y . a*
pAn+c4EZ—czgz—z+cm+EI£’£=0 @1)

Table 1 summarizes the dissipation terms appearing in Eq.
(41) in terms of standard damping mechanisms.?2

Individually, the damping terms appearing in Eq. (41) can
produce distinct recognizable spectral patterns for the under-
lying infinitesimal generator A4 as constructed in Egs. (7) and
(8) and under certain (rather special) boundary conditions can
provide well-defined, causal, stable systems.”?® The viscous
term can provide a model for which the spectrum translates
parallel to the real axis. The ‘‘square-root>’ damping term
(from a mathematical model construction originally proposed
by Chen and Russell?®) can provide the ‘‘wedge’’ pattern char-
acteristic of material dissipation. (The “‘square root’’ damping
terminology is borrowed loosely here from the development in
Chen and Russell?® with respect to the specific boundary con-
ditions, as discussed in the reference.) Kelvin-Voight damping
can provide a spectral pattern where the sequence of eigenval-
ues have an accumulation point located on the finite real axis’
(see, for example, Refs. 1, 7, 26-28). Our interest in the vari-
ational argument given here arises due to its generality and as
a vehicle for a unifying analysis that provides qualitative in-
sight as to the physical interpretation of these mathematical
models. Of course, the appropriateness of these terms as mod-
els for damping must be considered on a case-by-case basis,
depending on the problem at hand.

Similarly, from Eqs. (39) and (40), we obtain the string
model with damping:

P 9 an an ¥y
pA W = EE[KGA 6_2.] - 5; + ¢y —8z261 42)

Equations (39) and (40) are easily put in the first-order form
appropriate for our standard control modeling problem. For
the Timoshenko model, introduce the variables »(t,z), v(f,z)
and write the equations as

O v c; 3% ¢ 3¢

‘a—t——a—z""p—AE}:—z—Ha—z—Clﬂ (43a)
v kG(am
=5 (az ¢> (43b)

Table1 Dissipation terms and standard
damping mechanisms

Term in eq. (41)

Form of damping

64
437 Kelvin-Voight
9z
84
—C2 6_2“ ] Chen-Russell (or ‘square root’)
1 viscous
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d &y A c482¢+c3811_(cz+cg)¢

o oz T 1 T erazterar T ol 39
n _Ed
a paz @3d)

For the Bernoulli-Euler model of Eq. (41), introduce the vari-
able y(z,?) and write as

u- Asr pAdzt TpAdaz M (442)
oy _E¥q
% pa (44b)

For the string model of Eq. (42), introduce the variable (t,z)
and write Eq. (42) in the first-order form:

am y

3 oz T oM (45a)
v «xGdy

at  p 0Oz (45b)

1. Frequency Response Calculations
for Distributed Parameter Systems

In this section we will be concerned with the computation of
certain irrational transfer functions and a resolvent operator.
This provides a complete model, including transient response
for the distributed parameter system. For our purposes, the
resolvent can be considered as an integral operator with its
kernel a Green’s function. Using transform methods, we com-
pute explicit formulas for the abstract objects discussed previ-
ously. We focus on hyperbolic and parabolic linear (one-di-
mensional) structural models for distributed elements. As
noted previously, such models can be used for elastic dynamics
of beams, cables, etc. Finally, the computations are extended
to hybrid system models consisting of interconnections of elas-
tic components with rigid bodies and other lumped parameter
models.

A. Hyperbolic Models

Consider a class of elastic structures represented by hyper-
bolic partial differential equations in one space dimension
0 <z < L (e.g., arising from models such as those discussed in
the previous section):

ax(t,z) . 0x(z)
= F 0 + Hx(1,2) + Ev(t,2) (46)

subject to boundary conditions
(4, 0) + Tix(t,L) = Df(¥) 47
and initial conditions
x(0,2) = x°(z)€ IC"(0,L) (48)
Here, x is an n-vector-valued state x€ 3C"(0,L), ve JC'(0,L) is
an f-vector-valued distributed disturbance, f is m-vector-val-
ued boundary interactions, F and H are real n X n matrices
with F nonsingular and diagonalizable,'® and Z;, T'y are n X n
matrices. Controllability questions for systems of this type are

considered in Russell. !> After taking Laplace transforms in the
temporal variable ¢, we obtain

L
X620 = So G, (5,2, W)M(s,w) dw + Hpc(s,2)F(s)  (49)

where

M(s,7) = x%w) — CV(s,w)
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and X, ¥, F are the Laplace transforms of x, v, and f, respec-
tively. The function G,(s,z,w) is the Green’s function?* for
Eqgs. (46) and (47), and Hpc(s,2) is a transfer function from
boundary interactions to state. Since in most cases of practidal
interest the control of flexible structures will be effected by
actuators whose influence functions are highly localized, we
have formulated our model with boundary control only.
Comparison with Eq. (1) clearly shows that the resolvent for
the operator A: 3¢"(0,L)—3C"(0,L), defined by Egs. (46) and
(47), is the integral operator % G.(s,z,w) - dw. A straightfor-
ward calculation leads to the following form for Hpc: i

Hpc(s,2) = N(s,2)D (50)

where
N(s,2) = 8(5,2) [Ty + T1®(s, L)) (51a)
B(s,z) = el ~16I-H (51b)

The Green’s function for Egs. (46) and (47) is the solution{to

3G, (s,z,w)/dz = F\Is] — H] G,(s,Z,w) + I,6(z — W) (52)
subject to the boundary conditions

£,G,(s5,0,w) + G, (s,.L,w) =0 (53)

where 8( - ) is the Dirac delta function.>* From Eq. (52) we see

that the solution is discontinuous at the point z = w. After
some computation, we can write

GV(S;Z,W) = { Gr LEFT(S,Z,W), for 0=sz<w

G, rigur(s,z,w), forw=z=<L 4

with
G, 1err(s, 5, W) = —N(5,2)I1 &, L — w) 5)
G, riGHT(S,Z, W) = N(5,2)E1%(5, — W) {56)

B. Parabolic Models

We begin with the normal-form, first-order model consist-
ing of n equations as !

i
i

x3) _ x(1,2) + Fax(t,z)
9z

= o + Hx(t,2) + Ev(t.) (57)

subject to 2n boundary conditions

£x(t,0) + L, aigz’ﬁ FTxL) + T, 2 g;]“ ) _ Df) (59)

i

and n initial conditions L
x(0,z) = x%z)€ 3¢*(0,L) 59

Let T = [£,,5;] and T = [[',T';}—each 27 X 2n real matrites.
Following the outlined procedure, the Green’s functionfand
boundary transfer function can be computed as follows. 'Let

0, I, ;
A= [ ~G"\H —s,) —G-‘F] 0
B(s,2) = Ao (60b)
M(s,z) = [I,, 01%(s,2)[X + I'd(s, L)) 61)

Then the boundary transfer function is

Hpcls,2) = M(5,2)D (62
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and the Green’s function is given by

_{ Griemi(siz,w), for 0sz=w
Grlszw) = { G, rigur(s,z,w), forw=z=<L ©3)
with
0
G, err = —M(5,2)T®(s,L — w) [1] (64)
0
G, rigut = M(5,2)Z®(s, —w) [1 ] (65)
n

C. Modeling of Hybrid Systems

In most applications, models for the dynamics of flexible
structures involve interaction between various elastic and rigid
components. In the particular case of flexible structures asso-
ciated with large space structures, the potential topological
configurations can be quite complex. Various elements such as
beams, truss structures, cables, membranes, etc., may have
dominant distributed parameter effects. Typically, a central
body or bodies represent large concentrations of mass with
respect to the overall low mass density of the flexible struc-
ture. These are most effectively represented by lumped param-
eter models of their rigid-body dynamics. Additionally, vari-
ous attitude control actuators can add concentrated inertia
elements that can be effectively modeled as lumped systems.
Thus, carefully chosen linear hybrid models can provide an
effective tool for the analysis of dynamics of vibrations and
their effect on small angle motions for complex space plat-
forms. In this section we consider the structures and computa-
tions of certain resulting transfer functions and the resolvent
operator for the composite system along the lines of Sec. I.

The concept of a mechanical impedance (terminology bor-
rowed from electrical network theory) has been used in struc-
tural dynamic modeling for many years.” The dynamic stiff-
ness method (application to space structure modeling is
reviewed in Piché?) uses this notion to compute effective
transfer function models for interconnected structures.’! Our
approach here will follow along similar lines except that we
will focus on computing the resolvent operator for a hybrid
structure by direct manipulation of its kernel; viz, a Green’s
function.? A hybrid state-space model is constructed in Burns
and CLiff'® (where considerations are given for approximation
and computation in the hybrid state-space). We will consider
a hybrid state-space as consisting of a direct sum of spaces
xp= X,0 X, where Xy = IV is the distributed part con-
structed on an appropriate Hilbert space of Ny-vector-valued
functions for a distributed parameter system (DPS) written in
the abstract form of Eq. (7) and X,=R™, a finite-dimen-
sional state-space of the lumped parameter system (LPS).

For control of hybrid structures, we restrict attention to the
DPS modeled as either the hyperbolic or parabolic (or mixed)
cases that, as we have seen, can be expressed in the frequency
domain in the form

L
Xa(s,2) = §0 G, (5,2, w)M(s,w) dw + Hpc(s,q)F4(s)  (66)

where
M(s,w) = x3(w) — EV(s,w) 67

Clearly, Eqs. (66) and (67) can represent a disjoint collection
of distributed elements such as beams, cables, etc. [Conceptu-
ally, a version of Eq. (66) also can be written for higher-
dimensional spatial domains, but we feel for the current pre-
sentation that the required complexity of notation can mask
the simplicity of the underlying concepts—see Butkovskiy? for
details.} . ,

All LPS component models are combined into a LPS state-
space model as )

x(t) = Axe(t) + BJfdD), X = x40) (68
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with x&RNt= %, a finite-dimensional real space. By taking
Laplace transforms in Eq. (68), we write [analogous to Eq.

(66)]
X(s) = Res)x{ + HdS)F(s) (69)

where R{(s) = [sIy,— Ad™" is the resolvent for the (matrix) op-
erator A, and H(s) = R{s)B.
The hybrid state space X = X, X, consists of elements

x(62) = ( x‘(t))) 0)

Xa(t,z

which.are N = N; + Ngvalued functions of z€{0,L], ¢ >0. Fi-
nally, the interconnection of component systems is resolved
through a topological constraint relation consisting ofm=my
+ m, linear equations:

) + Tixa(t,0) + Toxy(t,L) + Tsxdt) = Ku(?) an

where u(z) is a k vector of control inputs to the hybrid system,
Tyand T, are m X Ny, Tyis m X N, and Kis m X k real mat
rices. The hybrid modeling problem is to find an equation of
the form of Eq. (66) by solving Eqgs. (66) and (69-71) simulta-
neously for the hybrid state x(¢,z). We provide the resulting
model in the following form:

L
X@s,2) = So G.(s,2,w)M(s,w) dw + R(s,2)x + Hpc(s,2)U6s)
(72)
where M(s,w) is given in Eq. (67). The resolvent operator for
the hybrid system is
L
R(s;4) = [I'?(s,z), So G,(s,z,w)-dw] (73)

where R(s;4) : X~D(4)S X, G, and R, N x Ny and N XN,
respectively, are matrix-valued functions that can be computed
explicitly as follows:

o Iy~ H)O6)

o) = [ -HBC(S,Z)Qz(S)] TR 79

_ ) —H{)0\(6)
Grlszw) = [G,(s,z,W) - Hac(s,z)Qz(s)] Pew) ()

where
_ L | @)

Os) = U + QO = [ Qz(s)] (16)
0() = [T;Hs), TiHac(5,0) + TiHscls L] (77)
P(s,w) = T\G,(s,0,w) + T2G,(s,L,w) (78)

Finally, the N x k transfer function matrix from boundary
control to hybrid state is

H(s) 0

H(s,2) = [ 0 ]Q(S)K a9

Hpc(s,2)

The derivation of Eqs. (72-78) is straightforward and pro-
ceeds as follows. Substitute Eqs. (66) and (68) into Eq. (71)
and solve for the interconnecting force F(s). This identifies the
terms Q(s), P(s,w). Now substitute the appropriate compo-
nents of F(s) into Eqs. (66) and (68) and use the hybrid state
model Eq. (70).

D. Example: Hybrid Modeling
Next, we consider a simple example of a hybrid model. The
simplicity of this example provides a completely transparent
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illustration of the required computations and serves to demon-
strate that closed-form expressions can be obtained by direct
algebraic simplification of the computations outlined in the
previous section. The example can be motivated by any one of
a dozen problems associated with the analysis of so-called
cantilevered modes of vibration for a satellite with flexible ap-
pendage (e.g., the SCOLE problem Taylor®?). Specifically, we
consider the generic problem of a cantilevered beam with tip
mass (see Fig. 1).

The equations of motion are determined from a standard
variational approach. For this simple example we will use the
approximation for a long thin beam (discussed in Sec. II as the
““string’” model) in which the Timoshenko equations discussed
are reduced by neglecting the rotation angle of cross section
¢ = 0in Egs. (20). The model for the hybrid system consists of
Eq. (35) for 0 < z < L, subject to the following boundary con-
ditions at z = L.

#n(t,L)
Lok

ay(,L)

+ xGA Fra Ju(t) (80)

and at z = 0:
_on(1,0)
7(2,0) = 3 =0 81)

Now Eq. (35) can be written in the form of Eqs. (66) and (67)
by a particular choice of distributed state: x,(t,z) = [v,nl7,
where Eq. (35) becomes, with o? = kG /p,

M) atz)
—at_ = TZ- (823)

v(,2) —a n(1,2)

at az (820)

sinh(s/a)(w + z — L) + sinh(s/a)(w —z — L)
—cosh(s/a)w —z + L) + cosh(s/a)(w + z — L)
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Thus, we write the DPS in the canonical first-order form of
Egs. (66) and (67):

subject to

[g (1)] x4(2,0) + [g (;] Xq4(2,0) = [(1)] Ja®) 849

To obtain a particular state-space model for the lumped sys-
tem, we take the LPS state as x, = [x,n(t,L)]7, where the first
coordinate is chosen to satisfy #(t,L) = x,(f) — (xGA /a)
v(¢,L). The LPS model can then be written as

|00 0 1/my 1t
Xdt) = [l 0] XAt) + [—ﬂ/amL 0 ] [ 2{] (85)

where 8 = kGA. Finally, the topological interconnection is re-
solved by an equation of the form of Eq. (71):

Jue 0 o 0 o Ju(®)
Su| + | =1 O x4, L)+ [0 O | x{)=| O
Ja 0 0 0 -1 0

We remark that for this example it is convenient (and rela-
tively straightforward) to choose the state coordinates for each
model so that the interactions at their boundaries are simple.
This provides some insight into the meaning of the individual
state variables with respect to the hybrid model, as shown in
Fig. 2.

From Eqgs. (81) and (82), we obtain the DPS Green’s func-
tion of Eq. (66) using Eqs. (50-56), which can be simplified to
the following:

—cosh(s/a)(w — z — L) — cosh(s/a)(w + z — L)]
sinh(s/a)(w —z — L) — sinh(s/a)(w + z — L)

Gr uerr = 2 sinh(sL /o)
sinh(s/a)(w — z + L) + sinh(s/a)(w + z — L) ~cosh(s/a)}(w —z + L)+ cosh(s/a)(w +z — L)
—cosh(s/a)(w —z + L) + cosh(s/a)(w +z — L) sinh(s/a)(w —z + L) — sinh(s/a}w +z — L)
G, RigHT =

with

G,(S,Z, W) = {Gr LEFT»

2 sinh(sL /)

O<z=sw

Grrigurs, W=Zz=<L

cosh(sz /)
sinh(sz/a)

sinh(sL /o)

Hpc(s,2) =

The final hybrid model can be written in terms of Eq. (72) by identifying the following terms. From Eq. (75), the hybrid Green’s

function G, can be expressed using Eq. (75) given the terms

—s sinh(sw/ )
—~sinh(sw/ a)

"H(le =

s cosh(sw/ a)
cosh(sw/ o)

—sinh(s/a)}(w — z) — sinh(s/a)(w + z)
cosh(s/a)(w — z) — cosh(s/a}(w + z)

cosh(sL/ a) ~ mys? sinh(sL/ )

cosh(s/a)(w — z) + cosh(s/a)(w + z) ]
—sinh(s/a)(w — z) + sinh(s/a)}(w + z)

~Hpc QP =

2 sinh(sL /o)[cosh(sL/ &) — mys? sinh(sL/ )]
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—)

R RAR

z=0 z=L
Fig. 1 Cantilevered beam with tip mass.

DPS

fae=9(t,L) Ja =it 1)

LPS

'—fi

Fig.2 Hybrid interconnection model.

From Eq. (74), we can write

—mys sinh(sL/ o) —cosh(sL/a)
—my sinh(sL/a) —mys cosh(sL/a)
—my cosh(sL/a) —mys cosh(sL/a)
—my sinh(sL/a) —mys cosh(sL/a)
R@s,2) =

cosh(sL/ a)—mys? sinh(sL/a)
Finally, from Eq. (77),

—s cosh(sL/a)
—cosh(sL/ )
—mys? cosh(sz/ @)
—mys sinh(sz/ o)
H(s,z) =

cosh(sL/a) — mys? sinh(sL/ )

These calculations were carried out using the computer alge-
bra system SMP. Considerable algebraic reduction was neces-
sary to achieve the final forms given, but the computer algebra
program was flexible enough to permit programming for auto-
matic simplification.

Iv. Conclusions

Wiener-Hopf methods for control system design are not in-
herently limited to systems with rational transfer function
models. Hence, they provide an opportunity for control syn-
thesis by dealing directly with dynamical system models char-
acterized by coupled systems of partial and ordinary differen-
tial equations. Nevertheless, the formulation of the required
transfer functions and Green’s functions is nontrivial even for
relatively simple systems. The significance of such models is
that the inevitable numerical approximations ultimately re-
quired for evaluating the model frequency responses can be
addressed in the context of the control problem with respect
for the control objective. We believe this approach can
provide important insights for the design of control systems
for flexible structures.

In this paper we have presented a systematic procedure for
computing the required transfer function and Green’s func-
tions for systems composed of common elemental models used
to describe flexible space structure dynamics. A key element of
the procedure is the reduction of standard models for linear
elastic elements (beams and rods) to well-posed state-space
representations. We also have shown how these models may
be combined with lumped element models in order to assemble
models for the interaction of hybrid systems. Essential for the
modeling computations are considerations of causality and
well posedness.

AIAA JOURNAL

Although systematic, the required calculations are tedious
even for relatively simple structural systems. We have found it
convenient to exploit a computer algebraic system (SMP was
used throughout) for computations of all equations resulting
in the example. The use of symbolic manipulation provides an
appropriate environment for analysis as well as computation.
For example, in the construction of hybrid models it is often
important to check that the transfer function models for indi-
vidual components are causal and proper. For the transcen-
dental functiens involved, a test for properness can be readily
carried out by expanding the function in a Laurent series ex-
pansion about the point at infinity. This analysis can be read-
ily carried out in SMP using the built-in power series function
Ps[ }..

Perhaps of more significance is the potential for algebraic
simplification of expressions and automatic generation of For-
tran code for numerical evaluation of functions. For example,
various numerical algorithms exist for the computation of
modal frequencies from transfer function models.?s! The al-
gorithm of Davis-Dickinson!® provides a numerical method
for computation of the matrix spectral factor central to con-
trol design. Both of these methods rely on accurate frequency
response data, which can be obtained from the resuiting trans-
fer functions using finite-precision arithmetic only after some
analysis of the functions involved. Through symbolic manipu-
lation, a natural interface can be provided between model con-
struction and numerical evaluation.®
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